\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Year 1} \\
\hline Addition \& Subtraction \& Multiplication \& Division \\
\hline \begin{tabular}{l}
= signs and missing numbers \\
Children need to understand the concept of equality before using the ' \(=\) ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.
\[
\begin{aligned}
\& 2=1+1 \\
\& 2+3=4+1 \\
\& 3=3 \\
\& 2+2+2=4+2
\end{aligned}
\] \\
Missing numbers need to be placed in all possible places.
\[
\begin{array}{ll}
3+4=\square \& \square=3+4 \\
3+\square=7 \& 7=\square+4 \\
\square+4=7 \& 7=3+\square \\
\square+\nabla=7 \& 7=\square+\nabla
\end{array}
\] \\
The Number Line \\
Children use a numbered line to count on in ones. Children use number lines and practical resources to support calculation and teachers demonstrate the use of the number line.
\[
7+4
\] \\
Use the vocabulary related to addition and subtraction and symbols to describe and record addition and subtraction number sentences \\
Recording by \\
- drawing jumps on prepared lines
\end{tabular} \& \begin{tabular}{l}
\(-=\) signs and missing numbers \\
\(7-3=\square\)
\[
7-\square=4
\]

$$
-3=4
$$

$-\nabla=4$

$$
\begin{aligned}
& \square=7-3 \\
& 4=\square-3 \\
& 4=7-\square \\
& 4=\square-\nabla
\end{aligned}
$$ \\

- Understand subtraction as 'take away' \\
- Find a 'difference' by counting up; \\
I have saved 5 p. The socks that I want to buy cost 11p. How much more do I need in order to buy the socks? \\
- Use practical and informal written methods to support the subtraction of a onedigit number from a one digit or two-digit number and a multiple of 10 from a two-digit number. \\
I have 11 toy cars. There are 5 cars too many to fit in the garage. How many cars fit in the garage?

 \&

Multiplication is related to doubling and counting groups of the same size. \\
Looking at columns \\
Looking at rows

$$
2+2+2
$$

$$
3+3
$$ \\

3 groups of 2 \\
2 groups of 3 \\
Counting using a variety of practical resources \\
Counting in 2s e.g. counting socks, shoes, animal's legs... \\
Counting in 5 s e.g. counting fingers, fingers in gloves, toes... \\
Counting in 10s e.g. fingers, toes... \\
Pictures / marks \\
There are 3 sweets in one bag. How many sweets are there in 5 bags?

 \&

Sharing \\
Requires secure counting skills \\
Develops importance of one-to-one correspondence \\
Sharing - 6 sweets are shared between 2 people. How many do they have each? \\
Practical activities involving sharing, distributing cards when playing a game, putting objects onto plates, into cups, hoops etc. \\
Grouping \\
Sorting objects into 2s/3s/4s etc How many pairs of socks are there? \\
There are 12 crocus bulbs. Plant 3 in each pot. How many pots are there? \\
Jo has 12 Lego wheels. How many cars can she make?
\end{tabular} \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Year 2} \\
\hline Addition \& Subtraction \& Multiplication \& Division \\
\hline \begin{tabular}{l}
\(+=\) signs and missing numbers \\
Continue using a range of equations as in Year 1 but with appropriate, larger numbers. Extend to
\[
14+5=10+
\] \\
and
\[
32+\square+\square=100 \quad 35=1+\square+5
\] \\
Partition into tens and ones and recombine
\[
\begin{aligned}
12+23 \& =10+2+20+3 \\
\& =30+5 \\
\& =35
\end{aligned}
\] \\
Count on in tens and ones
\[
\begin{aligned}
23+12 \& =23+10+2 \\
\& =33+2 \\
\& =35
\end{aligned}
\] \\
Add 9 or 11 by adding 10 and adjusting by 1 \\
e.g. Using a 100 square \\
Add 9 by adding 10 and adjusting by 1 \(35+9=44\)
\end{tabular} \& \begin{tabular}{l}
- = signs and missing numbers \\
Continue using a range of equations as in Year 1 but with appropriate numbers. \\
Extend to \(14+5=20\) - \\
Find a small difference by counting up \\
\(42-39=3\) \\
Subtract 9 or 11. Begin to add/subtract 19 or 21 \\
e.g. Using a 100 square \\
\(35-9=26\) \\
Use known number facts and place value to subtract (partition second number only)
\[
\begin{aligned}
37-12 \& =37-10-2 \\
\& =27-2 \\
\& =25
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\(x=\) signs and missing numbers
\[
\begin{array}{lr}
7 \times 2=\square \& \square=2 \times 7 \\
7 \times \square=14 \& 14=\square \times 7 \\
\square \times 2=14 \& 14=2 \times \square \\
\square \times \nabla=14 \& 14=\square \times \nabla
\end{array}
\] \\
Arrays and repeated addition \\
\(\bullet \bullet \bullet\)
\(\bullet\)

2×4 or $2+2+2$ or $4+4$
\bullet \\
Partition \\
Children need to be secure with partitioning numbers into 10 s and 1 s and partitioning in different ways: $6=5+1$ so e.g. Double 6 is the same as double five add double one. \\
Doubling multipes of 5 up to 50 \\
$15 \times 2=30$ Using arrays \\
AND double 15

 \&

$\doteqdot=$ signs and missing numbers

$$
\begin{array}{ll}
6 \div 2=\square & \square=6 \div 2 \\
6 \div \square=3 & 3=6 \div \square \\
\square \div 2=3 & 3=\square \div 2 \\
\square \div \nabla=3 & 3=\square \div \nabla
\end{array}
$$ \\

Grouping \\
Link to counting and understanding number strand \\
Count up to 100 objects by grouping them and counting in tens, fives or twos;... \\
Find one half, one quarter and three quarters of shapes and sets of objects \\
$6 \div 2$ can be modelled as: \\
There are 6 strawberries. \\
How many people can have 2 each? How many 2 s make 6 ? \\
$6 \div 2$ can be modelled as: \\
In the context of money count forwards and backwards using 2p, $5 p$ and 10p coins \\
Practical grouping e.g. in PE \\
12 children get into teams of 4 to play a game. How many teams are there?
\end{tabular} \\

\hline
\end{tabular}

		Use partitioning to double numbers. Say "double 60 is 120 , not double 6 is 12" Use "Bus stop" method to recall times table facts mentally. 3 children each have 7 pencils: Recall, 71421 123	
Fractions And Percentages			
Begin to add like fractions $\text { e.g. } 3 / 8+1 / 8+1 / 8$ Recognise fractions that add to 1 e.g. $1 / 4+3 / 4$ e.g. $3 / 5+2 / 5$	Begin to subtract like fractions e.g. $7 / 8-3 / 8$		Find unit fractions of quantities and begin to find non-unit fractions of quantities.

Year 5			
Addition	Subtraction	Multiplication	Division
Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of 2-place decimal numbers, including amounts of money Choose the most efficient method in any given situation	Use column subtraction to subtract numbers with up to 5 digits Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 Use complementary addition for subtractions of decimal numbers with up to 2 places, including amounts of money Choose the most efficient method in any given situation	Use expanded (ladder) multiplication to multiply a 4-digit number by a 1 digit number Introduce short (compact) multiplication, with carrying, to multiply a number with up to 4 digits by a 1-digit number $\begin{array}{r} 1234 \\ \quad \times 6 \\ \hline 7404 \\ \hline \end{array}$ Choose the most efficient method in any given situation	Use Repeated subtraction (chunking) to divide three and four digit number by two digit number 13 $195 \div 15$ Answer 13 Introduce short division to divide a number with up to 4 digits by a number ≤ 12 Give remainders as whole numbers or interpret appropriately for the context Short division Example without remainder: $81 \div 3$ $\begin{gathered} 27 \\ \cline { 2 - 2 } \\ 1 \\ 8^{21} \end{gathered}$ Children use their knowledge of the 3 times table to find, "How many 3 s in 80 where the answer is a multiple of 10 ?" This gives 20 threes (since 30 threes would be too many), with 20 remaining (2 tens are carried over to the next column) Now ask: 'How many threes in 21". With remainder $\frac{47 r 2}{6 \longdiv { 2 8 ^ { 4 } 4 }}$

Begin to add related fractions using equivalences
e.g. $1 / 2+1 / 6=3 / 6+1 / 6$

Begin to subtract related fractions using \quad Find simple percentages of amounts equivalences
e.g. $1 / 2-1 / 6=2 / 6$
e.g. $10 \%, 5 \%, 20 \%, 15 \%$ and 50%

Begin to multiply fractions and mixed numbers by whole numbers ≤ 10 e.g. $4 x^{2} / 3=8 / 3=2^{2} / 3$

Find non-unit fractions of large amounts
Turn improper fractions into mixed numbers and vice versa

Year 6			
Addition	Subtraction	Multiplication	Division
Use column addition to add numbers with up to 6 digits. Use column addition to add decimal numbers with up to 3 decimal places	Use column subtraction to subtract numbers with up to 6 digits Use column subtraction to subtract decimal numbers with up to 3 decimal places Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10000 Use complementary addition for subtractions of decimal numbers with up to 3 places, including money	Use expanded (ladder) multiplication to multiply a 4-digit number by a number with up to 2 digits Use expanded (ladder) multiplication to multiply a number with 1 or 2 decimal places, including amounts of money by a number with up to 2 digits Use short multiplication to multiply a number with up to 4 digits by a 1 or 2 digit number Use short multiplication to multiply a number with 1 or 2 decimal places, including amounts of money by a 1 or 2 digit number	Use chunking long division to divide 4digit and 5-digit numbers by up to 2digit numbers Use chunking long division to divide numbers with up to 2 decimal places including amounts of money by numbers up to 2 digit Use short division to divide a number with up to 4 digits by a 1-digit number Use short division to divide numbers with up to 2 decimal places including amounts of money by a 1-digit number Give remainders as whole numbers or as fractions or as decimals
Fractions And Percentages			
Add mixed numbers and fractions with different denominators	Subtract mixed numbers and fractions with different denominators	Multiply fractions and mixed numbers by whole numbers Multiply fractions by proper fractions Use percentages for comparison and calculate simple percentages	Divide proper fractions by whole numbers

